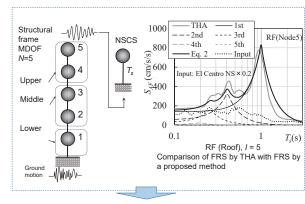


石原 研究室

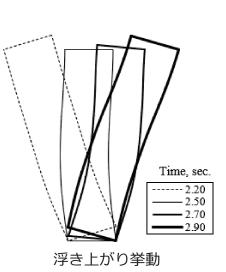

マルチハザードに対して持続可能な建築物・都市

未来産業技術研究所 都市防災研究コア フロンティア材料研究所 構造機能設計領域

https://www.tishihar.net

- ・非構造部材の耐震性・地震力
- ・浮き上がり挙動による地震時の 損傷低減効果
- ・建築物の積雪後降雨荷重、洪水 荷重、等

建築構造、地震工学を主な対象として、非構 造部材の耐震性と設計用地震力に関する研 究、免震・制振構造の1つとして特に浮き上が り挙動に関する研究(高次振動発生メカニズム、 損傷低減効果、等)などを実施しています。ま た、積雪後降雨荷重、津波・洪水荷重などを含 め、マルチハザードに対して持続可能な建築 物・都市を目指した研究に取り組んでいます。



Seismic force (acceleration) for design of nonstructural components

	Classified by the level of resonance		
Layer	$T_1/3 < T_s$ or T_s is unknown	$0.1(s) < T_s \le T_1/3$	$T_s \leq 0.1(s)$
Upper	2.2 g	1.1 g	0.5 g
Middle	1.3 g	0.66 g	0.5 g
Lower	0.5 g	0.5 g	0.5 g

非構造部材の設計用地震力

- 床応答スペクトルの略算法の提案(上)
- ・提案法に基づく天井の設計用地震力(下)

(a)浮き あり

(b)浮き なし

実験後の残留変形

浮き上がり挙動による地震時の損傷低減効果

- ・建物の浮き上がり挙動に関する数値解析(左)
- 弾塑性1層模型による振動台実験(右)

積雪後降雨荷重

- ・複数勾配を有する屋根の荷重評価用モデル(上)
- 実験で確認された帯水層(下)