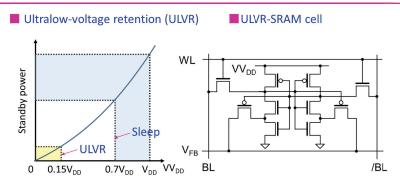

SUGAHARA LAB.

Integrated Electronics for Ultralow-Power Edge/Wearable Computing and Internet-of-Humans

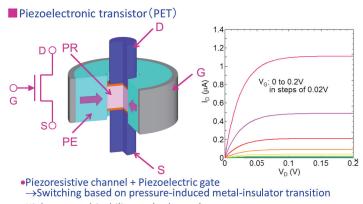
■ Beyond-CMOS devices/circuits ■ Micro thermoelectric generators CMOS Integrated circuits


FIRST, Imaging Science and Engineering Research Center

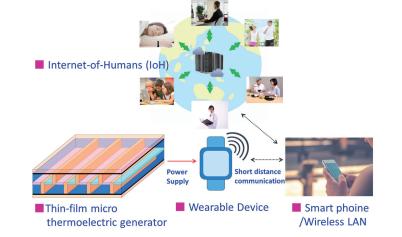
Low-standby-power CMOS logic technology using nonvolatile retention

- Nonvolatile bistable retention/memory circuits based on NVM/CMOS hybrid technology
- •Energy-efficient nonvolatile-power-gating architectures using nonvolatile
- NV-SRAM Macro CTRL buffer Row decoder Pre-charge Column decoder Readout/Write circuits
 - •NV-SRAM → Highly effective at reducing standby power for caches
 - •Applications: Microprocessors/Microcontroller and Processing-inmemory units (e.g. neural accelerator)

Highly energy-efficient power-gating architecture based on ultralow-voltage retention


- •Conv. 6T-SARM: Sleep mode (0.7V_{DD}) → Insufficient static power reduction
- ULVR-SRAM: ULVR at 0.15V_{DD} → Highly efficient static power reduction -Normal inverter (NI) mode: High-performance operation at $VV_{DD} = V_{DD}$ -Schmitt trigger (ST) mode: ULVR at $VV_{DD} = 0.15V_{DD}$
- Beyond-CMOS devices and circuits for ultralow-voltage high-speed logic systems

8kB ULVR-SRAM Macro



- ULVR-SRAM → Completely CMOS-compatible technology for highly efficient static power reduction
- Applications: Microprocessors, SoCs, and Processing-in-memory units (e.g. neural accelerator)

Micro thermoelectric generators using body heat for wearable devices

- •High current drivability at ultralow voltages
- Low leakage CMOS compatible circuits

