

Yoshida Lab.

Innovative MEMS/Micro Systems Using Smart Materials

Innovative Mechano-Device Research Core, FIRST

http://yoshida-www.pi.titech.ac.jp/

- New microactuators using functional fluids
- High-output power micro fluid power sources
- Advanced microrobots using fluid power

For advanced microrobots that perform power-needed tasks in micro areas, we have been developing innovative MEMS/ micro systems using smart materials such as an ERF (electro-rheological fluid) that changes its viscosity by an applied electric field. Microactuators, microvalves, micro fluid power sources, and microrobots have been developed by using MEMS technologies.

ER microvalves installable in soft microactuators

- Flexible ER microvalve (FERV) using conductive polymer was realized by MEMS process.
- 2×2×1.5mm³-sized stacked ER microvalve was realized.
- High pressure ER microvalve was developed using MEMS technologies.

In-pipe mobile microrobot using FI micropump

- 12mm-dia. robot travels with on/off controlled FI micropump
- Traveling velocity of 0.9 mm/s was realized.

Multiple ER microfinger system using alternating pressure source

- Each microfinger is driven by synchronously rectifying ERF alternating flow using ER microvalves.
- 1.6mm-long microfinger was realized by MEMS process.
- Microfinger using FERVs and microfinger using particle type ERF were developed.

FI micropump

- Flow rate was increased by using fluid inertia (FI).
- Output power of 1.6 W was realized with 1.3cm³-sized micropump.

ACEO (ac electroosmosis) micropump

- ACEO is generated by square pole and slit electrodes.
- Flow velocity of 1.6 mm/s was realized with 0.2×0.2×0.05mm³-sized micropump.